
.

A Probabilistic Formulation for Hausdorff  Matching

~kk 17. ()]S011

Jet Pro[,ulsion  I,aboratory,  California Iustitute of I’echuo[ogy

Mail Stop 107-102, 4800 Oak Grove Drive, Pasadena, CA 91109

http://robotics .jpl.nasa.gov/people/olson/homepage .html

Abstract

Maichiug intagcs based OIL a  ][ausdorfl nleasure
has become popular for conlputer vision applications.
However ,  no probabilistic nlorfel  has been used  in these
applications, This limits the  formal treat lllent of sev-
eral issues, such as feature uncertainties and prior
knowledge. ]IL th is  paper , u)e det)elop  a probabilistic
jor-mulation jor I{ausdorfl matchiug in terms oj mar-
im um likelihood estimation. 7’his jornIulation yields
several benefits with respect to previous l[ausdorfi
matching formulation. The techniques are applied to
a mobile robot selj-localizatiori problem,

1 Introduction

‘lhe use of variants of the }laus~orff  distmlce  has re-
cently become popular in image matching applications

(see, for example, [4, 6,8, 13, 14, 15]). J$’bile these
methods have been largely successful, they have lacked
a probabilistic for][lulatiou of the Inatching process,
and this has made it difficult to incot-r)orate  probabilis-
tic information, such as feature uncertainties and the
prior probability distributiorl  of model positions, into
these applications. This work addresses tllesc issues by

introducing a probabilistic formulation of I[ausdorff
lnatching.

After a brief review of IIausdorff  rllatclling tccll-
lliques, we descr ibe  a  probabi l i s t ic  fornlulation of
Ilausdorfl  matching based OIL the principal of rllaxi-
lt~un~ likelihood estimation. In this fortnulatio~l, \ve
seek local maxima of the likelihood fu[lction over the
possible tnodel positions, assuming that the model a[J-
pears in the image. Note that this formulation can be
applied evcll  when the nlodcl does not appear it] the
i m a g e  o r  ap~)ears  Jnu]tiplc  ti[t~es.  \t’e IMust sirn~~ly  set
the criterion determining }vhicb model [)osition.s  arc
reported as likely hypotllcscs appropr ia te ly ,  \\rhell a
particular probability distribution furlction (1’1)1)  is
introduced for tlm distance of each ~l~odcl feature froln

an ilnage feature in the image, this formulation yields
the conventional I[ausdorff ]l~atcl~i]~g~tlethod.  Alter-
nate l’1)l’’s  yield ne~v and interesting variations of the
nlethod.

‘lhis I)robabi]istic  formulatic)no fllausclorffr tlatcl~-
ing yields several benefits, It allo~vs the incorporation
of[)rior kno~vledge,  such astheprior probability distri-
bution ofnlodel positions, irltotbe rnatctling process.
It also allolvs  formal treatment of feature urlcertairl-
ties iu t)le  search for likely ll~odel positions. In addi-
tiou, ~vith this formulationwe can consider arbitrary

probability distribut ions for the locatiorls  of the image
features ,  rather than the siiiiple ttvo-valuecl  s u p p o r t
furlction that corrcsporlds to conventional I[ausdortf
matching methods.

\Ve discuss efficient techniques for searching the
Ilose  s~,ace i n  ttlis for~llulatic)n  a n d  give  expcrirner)-
tal evidence that indicates improved accuracy in the
rwogrlition and localization of objects in images is
achieved. Finally, }ve apply these techniques to a mo-
bile robot self-localization application that performs
r[~atcllirlg  between terrain occu~)ancy  maps to deter-
]nirle  the robot’s position.

2  Hausdorff  matchjng

‘1’llis section rcviewx  a variation of the I[ausdorff
distance conlrnorlly’  used to perfor~[)  image matching,
as well as tile application of tl]is rneasurc to matching
irl I)iuary irnagcs and an efhcicnt  search strategy for
firldirlg  tllcrelative irnagepositions }vhere the measure
Illects so[ne criterion.

2.1 llausdorff m e a s u r e

I’ort\vosets ofpoirlts A an, ] 1), the directed I[aus-
dorfI’ distarlcc froth ,4 to }1 i s :

(1)
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Figure  1 :  I)irccled  llalls(lorff  disla[lce  t,ct\vcc[l Iwi[lt sets.
‘1’he white points  arc set .Y and the  Idack [wirlts arc set }’.

Yvllere [ill is any IIorlll.  ‘1’ flis y ie lds  ttl(~ Illaxilllurll tlis-
tatice from a I)oint  iu set .’1 to i(s ucarest ~)oillt it) s e t
11 atid is illustrated ill Figure  1. Notice, ho~vevcr, that
a  siugle outlier iu A  c a n  cllailge th is  distailce by all
a r b i t r a r y  aluouut.  For  ifnage Illatctli[lg,  wliere A is
usual ly  a  set of II1OCIC1  poi[lts atid f; is a set of irnagc
p o i n t s ,  JJ,e wish  to allow, outliers. It is thus COrIIIIIOII

to use  the partial cfistauce [3]:

(2)

‘1’his  yields the lIaLlsclorfl  clistal]ce a[llo[lg  tllf: I{ ~)oi[lts

i[l A  t h a t  b e s t  m a t c h  poiuts iu 11 (slid thus  allotvs
/.41 - 1{ outliers iu the set .4).

A  variation on tile p a r t i a l  }[austlorfT  distauce i s
t o  deterllliue the maximulll Ilurtiber of  poillts ili t h e
rllodcl  such that distauce is hclow  a giveu  error tllrcsll-
old:

h~(.’l, B) < A (3)

I,et l{J(A1  11) deuok the maxilllull, 1( f o r  }vllich ( 3 )

is true. ‘1’he r a t i o  $’~(A, l;) = ‘Z’++q i s  called tile

I[ausdorfffT actzon,  si[lce  it is the fractiou of tllc ~)oillts
iu A that lnatcll a poi[lt iu f) up to tlie error  f!i. ‘1’llis
forlnulatiou is easy to \vorfi with, siuce A_J(A, 11) is
simple to compute, and we exallline this variatiorl of
llausdorff matching in this paper,

Note  tha t  pre-settiug  so~ne Illaxi[tlu[tl error 6, atld
deter lniuiug the rtlodel positions such that, f~ is shove
some threshold  Y’, yields equivaletlt  results to settiug
t h e  m o d e l  fractiorl to 7’ aud dcternliuiu,g  the [tlodel
[,ositiolls w,itll part,  iai I[ausdorfl  distallcc 110 g r e a t e r
tliau 6, “1’his forrtlulatiou of tllc IIausdorfT ~tletric  does
lLot change the solutious that are foutld.

2 . 2  A p p l i c a t i o n  t o  binary i m a g e s

\f’e collce[ltrate 011 t h e  apl)licatiou o f  ttlest’  techn-
iques t o  bir]ary cligital itllages (e.g. il[iage edge
llla~Js). I;ach p i x e l  ill s u c h  an itllag<’ takes a value

of O or 1. \Ve say that the pixels lvith a value of 1 are
occup~cd  aud those with a value of O are unoccupied,

I,et .11 he a lnocfel  illlage o r  t e m p l a t e  a n d  1 b e
all il[lage ttlat rl~ay colltaill au instance of the model.
Ilotll ,11 atld I cat)  he coiisidered to I)e discrete sets of
l)oillts  corrts~)otlditig to tile Iocatious of t.fle o c c u p i e d

pi~(+ ill tile i[llage or tetlll)late. Let t be a par t icular
~)ositio[l of tile Itlodel  \vittl  rfwl)ect  to tllc image.  I’his
ttlod(’1 I)ositioll catl  I)e tllo(lgllt ofa futlct ion tha t  maps
tile IIlodtl l)oillts into tile i[[lage;  f(:\l) is thus tile set
of  Illo(l(’1 I)oillts  after rtlal)l~illg  tllelll accorcfitlg  to t.

NO\v,  colisidcr tile dilatio[l o f  tllc illlage l)y tile
str~lcturillg  t’lellletlt  .$’,$ that cotlsists  of all of the pix-
els fvitlii]l  A o f  tllf~ origin \vitll  resl)ect t o  Soll)c Ilor[ll,

‘l’lIf’ dilate(l i]]lage,  1A =  I ,1 .S,~ (~vllere L deuotes the
Nlitlliolvski  sul  Il or Illorl)llolc)gical  dilatiotl o p e r a t o r ) ,
Ilas all occul)iecl  J)ixel at eacli  locatiou that is $vithill  ii
o f  atl occu~)ied  I)ixel ill tile o r i g i n a l  i[tlage. I,et lJ(n/)
dcltote tile value of lJ (i.e. (1 or 1) at the position
o f  so[lle  I[lodf:l ~)ixel, 711. \\’e earl \vrite  t h e  }Iausdorff

fraction (as a func~ioll  of tile lnodel ~)ositiou)  as fol-
low’s:

2.3 13 fflcient search strategy

‘l’tie best kllo~vu search strategy for locatiug model
~)ositiorls  that satisfy SOIIL(I criteriol~  with respect  to
t}lc ][ausdorff fractioll is a ll~~]lti-resol~ltioll  s e a r c h
st ra tegy that exartli[les a hierarchical cell decotnposi-
tiotl  of the sl~ace of possik)le  IIlodel  positions [12]. ‘1’his
Illetllod divides the s~)ace of model positions iuto rec-
tilinear cells  and dekrIIli  Il(;S W’lliCh  c~]k llla~ cc)lltai[]  a

~)ositiorl satisfyitlg tile criterion usiug some test. l’he
cells tl)at pass tile test are divided iuto subcells, }vhich
are exalnined recursively. ‘1’tle rest are pruned,

‘1’he kcy to this met!lod  of searchi[lg the parameter
s~)aie  is a quick riletllod tc) col~servatively  test whether
a cell call  contait!  a ~)ositioll  satisfying the criteriou.
‘1’llis test is alloivetl  to fail to rule out a cell that does
llot colltaiu any positions satisfyil]g  the criterion, but
it Slloul[l tlever rule out a cell t]lat does colltair]  s u c h
a posit iotl.

[t i s  tyi)ical ill t h i s  [t~ethod  t o  cotlsider only tl]e
IIlodf’1  ~)ositiorls iu sort)e uuderlyillg  discretizatiou  o f

th( [ION s[)ace. \\”heII a cell of this space is reached

t h a t  co]ltaills  a sil)glf. ~jositiorl  ill t h e  discretizatiorl,

tl]is [)ositio[) is testecl  ex~)licitly,

I[i o r d e r  t o  dLVeIOI, all ef[icierlt  t,esti[lg  ~ilecllatlis(li
f o r  dcter[tlirlirlg  Jvtlt.tllfr  a  cel l  can he pruned, it is
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useful to consider the distance transforln of the image.
l’he distance transforn]  of a binary image ~ncasrrres  tlie
distance from each pixel in the image to the closest
occupied pixel [1 1]. Denote the distance transform of
inlage I(2, y) by l~J(r, y).

To test a cell C of possible model positions, the
discrete pose c closest to the center of the cell is first
determined. l’he maximum distance between the loca-
tion to which a nlodel  pixel is mapped into the i~nage
by c and by any other pose in the cell is tliell conl-
puted. \Vc call this distance the imuge-mapped radius
of the cell and denote it A c:

Now, if we seek positions at which K~(t(Af), 1) is
no less than 7’, then, to test the cell, wc count  the
number of Inoclcl  points for which the probe into tile
distance transform at the appropriate location is no
larger  than 6 + AC. If this nu[nber  is less than 1’,
then  \ve call  pruue the cell,  since it ca[lnot conta in  a
~nodel  position that nlatches T pixels in tile luodel to
pixels in the image up to the error 6 [12].

\Vhe[l  a cell cannot be pruned, it is divided into

nlultiple subcells, and tlic procedure is applied recur-
sively to each of the subcells. ‘1’liis process continues
until all of the cells irl the pose space have been ex-
hausted.

3 Probabilistic formulation

\\re now descr ibe  a  probabi l i s t ic  for~nulation of
Ilausdorff  ~natclliug using the principal of maximuln
likelihood estimation. ‘1’0 forlnalizc t h e  problc[n,
let us say that we have a set of rnodcl f e a t u r e s ,
Al = {/11, . . ..pn. } and a set of i,nage features ,  1 =

{VI, . . . . u,,}. Let t E 7’, be a randoln variable descril>-
itlg the position of the model in the irtlage. ‘Ibis lnakes
an impl ic i t  assulnption that exactly o~le irlstatlce of
t h e  m o d e l  a p p e a r s  iri the image. ltowcvcr,  IVC shal l
see that t]lc  cases where the lnodel  does not appear,
or the model appears in multiple irlstauccs, can Lc
easily handled in this forrtlulation.

2’0 formulate the problem in ter[ns of maximunl
likelihood estimation of tile model position, Tvc nlust
have some set of measurcl[lents that arc a furlctiou of
t h e  positiotl  of the model.  ~\Jc use the dista[lce froltl
e a c h  model pixc]  (at the ]Jositioll  speci f ied  by t) to
i t s  c loses t  occupied pixel in the irl~agc M our set of
lncasuremcnts. F;ach distallce can t.,c f o u n d  sitt)ply
by looking Up the position of the rilodcl  pixel  in the
d i s t a n c e  transfor[n of the i[nage. ‘J’hme ciistailces are

rando[ll variables that we denote by 1)1, . . . . D,,. Jf’bile
tllesc dista[lccs arc not indepcndetlt, we ~nodel them as
such. Recent \vork  on determining the probability of
a false positive for lIausdorfT ~natching [1, 10] provides
support for treating the nlodel features independently.
lf’ith this approximation, \ve can for[nrrlate the li!-celi-
hood function for t as the product of the probability
distril)utions of these distances:

(5)
i=. ]

~vhere ~)(l)i;  t) is the probability distribution function
(1’1)1”)  of 1)1 as a fuuctiorl O f t . ‘1’aking the logarithm
of (5) yields:

n,

111 I.(t) = J; lllfl(J)l;t) (6)
i=l

\Vith a particular PI)F this yields a measure equiv-
alent to l{d(t(llf), 1). Tbc I’I)F necessary for this to
be tile case satisfies:

‘1’llis I)robability  clistribution function is two-valued
as i[l the convent iona l  IIausdorff matching forrnula-
tiou. If there is support for the model  feature in the
image at this position (i.e. all inlage feature lies ~vith
6 of it), tllell sotne coustant probability is ~assigned to
~(]),; t), otber~vise  some s~naller  constant probability

is assigned to ~~(l~i; t). l’he precise values of kl and Lz
are uni[nportant  in this analysis as long as k? > 0. In
practice, \ve use kl = O and k? = 1.

Notv, let us address the assumption implicit in this
fornlulation that the model appears exactly once in
the image. If \vc have are seeking Inodels that may
.a~)pear Inore  than  once  ill a n  i m a g e , o r  [lot at all,
\vc Illust only set some threshold on (6), as is usually
done in I[ausdorff matching formulatio~ls. The model
positions that surpass tl~e threshold correspond to the
likely l)ositions  of the model in tile image.

4 Using the probabilistic formulation

“1’his section ex~)lorcs  some of the advantages that
arc  y ie lded t)y the l)robat)ilistic  forlnulatioll of I1aus-
dortT IIlatclli[ig.

4.1 Uncertainty in the image features

‘1’lic l,robabilistic fornlulatioli o f  IIausdorff nlatch-
illg allotvs  ttle fori~lal  treat II]c[lt. of ulicertaiuties in tile



, .

. . . . . . . . ,, . . .
iIllage features .  For  exarllple,  Jve ~llay tla~’e a teaturr
detector that yields u[lcertaitlty estilnates for tile po-
sition and/or the existence of the feature. A feature
that is less likely to exist in tile ilnage, or for which
the position estitnate is irlaccurate, [Iligllt  be tveigllted
less  in the lnatcl~itkg  process, arid  for features Ivitll  itl -

accurate position estir]lates, Llle allo}vablc  positions of

~node] points that call  Inatch tllenl stlould be larger.
III o r d e r  t o  t r e a t  these issurs, \ve Illodify tlie 1’1)1’

o f  o u r  lneasurclnelits, [~i. l~actl inlage I)oillt  (itidexed
by j) ]Ilay be assigned  a ~Jrobal)ility  of  exis tence ,  Cj,

and a uncertainty radius, rj. \Vc llo~v ddiue:

(8)
‘1’his allo$vs image features to Iw Ivei,gllted  by their

probability of existence and to co[]tribute to all arl)i-

trary radius in the i~nage.  \Vhile i[llage features ~vith
larger positional uncertai[lties contribute to a larger
area in the ilnage, their co[ltrit)utio]l  at each position
is less. Once again, tile constants, kl and k?, are irrel-
evant to fiuding local maxima and we use  kl = O and
k~=l.

J$’e can vary the probability distributions lnore sig-
nificantly, if desired. For  example, we Illay  use a nor-
ttial distribution with a constant additive terill:

‘1’his distribution models  the case where the error in
feature localizatio[i has a~)proxilnatcly a Gaussian ctis-
tribution. ‘1’he added  co[istant allows for cases when
the feature is not found at all.

N o t e  t h a t  tile efIicie[lt  search s t ra tegy cliscussed
above does not work directly with these cllangcs. \\’e
r e q u i r e  soltle Inodificatiorl  to ttle search strategy to
perforrrl matching  with this forlllulatiou.

4.2 Prior probabilities o f  m o d e l  p o s i t i o n s

In some applications, }ve have prior knowledge of
the likelihood of various lnode]  posit ioll.s beil]g  cor-
rect. I:or exanlple, in tracking applicatio[ls (e.g. [2, 5])
\ve ll~ay use tile previous positioti  of tile object being
tracked and its velocity tc) predict tllc next ~)ositiorl  of
the object. It is often reasoilahle to ll~odel the prol)-
at)ility distribution function of the error ill l)ositioll
Ivitli  a Ilor[tlal distril)utioll:

1
~:+62

1“(6’’ 6’) = h%’ ‘“-y’ ( l o )

Jvllerc br aucl dy are ttle clltterences Ill Ltle posltlon lrom
tile ~jositioll  estinlate, and a is the standard deviation
of distrihutioll.

Iii tile case ~vllere the  pr ior  probabi l i ty  of  each
[tlodel  ~)ositioll  is riot uniforll~,  let ~(t) b e  t h e  p r i o r
l)rol~at)ility  of posit iotl t. \Ye Ilowf h a v e :

711

f,(t) = ~(t)rlp(l~i;f) (11)
i=l

‘1’akiilg tile Iogarithrll yit:lds:

r?l

llll.(t )=lll~(f )+~lll~)(~~i; f) (12)
,=1

It is relatively easy to itlcc)r~)orate  this infornlation
into ttle ellicietlt s(’arcll  s t r a t e g y .  JVhell  }ve co[llpute
A(, \Ye ~llust o~ily illcludc tile maximum decrease  (or
[llil~i[llu[ll  irlcrease) ill the first term 011 the right side of
( 12) }vtlerl deterrllining ~vlletllt’r a cell can be pruned
to el~sure that \ve do not rule out any cell than call
co[ltain a valid ~)osition.

‘l’lie usc of prior inforInation as to the likelihood of
various [noctel posit ions  being correct yields the adcti-
t.ional  benefit that \ve Ilave  hc,unds  ill the iItlage on tile
s[lace \ve need to search. \Ve need r[ot exatlline any po-
sitio[l for ~vllich in j(f) is so sInall that the sum with
the best ~)ossib]e score fc)r each of tile model pixels
c o u l d  [lot sur~)ass  tile score  for tile best kuow II posi-

tiorl  (or sonle threshold if \ve seek all positions with
scores  al)ove  thr threstlold).

5 Eflicient  a l g o r i t h m

As Iloted  above, solne of ttle possible modificatiol~s
that call  be Itlade to the Il\atching for[nulation require
that the search strategy be rethought. l$his  section
discusses techniques that allow the space of possible
Illodel  posit ioIls to be searched efrlcient]y for posit io[ls
that satisfy sonle matching criterion according to the
prol)ahilistic forrtlulatioli of I[ausdorff nlatching.

I,et  us first note that a brute force [nethod  can be
const ructed  by deterIninirlg. for each pixel location
in ttle illlage, the value of 1[1 JJ(l~ij  t), since p(l~~;  t)
is ilidel)ellde[lt of the particular rl~odel feature; only

ttlc [,osition that t ~llaps Jlli in to  the  itllage is impor-
tatlt. \Ve can thus colllpute a tra(lsform of the i[[iage,
drlloted hy l)(,Y) =  {p(.Y; t) I t(?rl)  =  .Y}, ~vhere
Y = [.r y]7’ is a pixel location in tile illlage, accordillg
to F;quatioll  (8)  or h;quat  ion (9).  \Ve call this the fea-
lur~ pwhrblllly tmns~orlfl  of tile image. Each  poss ib le
[)osition  of the [Ilodt’1 call tlleli be  tes ted by probing

4



this transform at the location that the position nlal,s
each model  feature, summing tlle[n, a[ld  deterinini[i.g
if the sum meets the criterion.

Now, to search the space efficiently, we adapt tile
Inulti-resolution search strategy cliscussed  previously,
where we attempt to prune large cells of the tralwfor-
rnation space. Recall that in this search strategy, we
compute, for each cell that is exarninect, the discrete
Inodel position closest to the center of the cell and
image-mapped radius of each cell, denoted by c and
A c, respectively. l’hen, each of the model features is
tested todetermine if there could be a position W’ithill
thece]l where the modelfeature ismatcbed byan itm
age feature up to the allowable error.

In the ne~v formulation, we instead want to de-
termine the lllaxill~url~corlditiotlal  probability that a
)nodel feature could have with respect to any Inodei
position in the cell. JVhileit isnotefiicieut to compute

these values upon demand, they are a function OIIIY of
the image-mapped radius of the cell and the position
in the image. If lve take care to ensure that all of tile
cells at each level of the search have the same ditnen-
sions, }ve can efficiently compute all of the values at
once.

let AI,  E,etlle~l~axirll~ lt[lit~lagt:-~I] al>~Jeclr aclillso\'er
the  unpruned ce l l s  a t  level  1,. hTote that for ~llany
transfor~nation spaces (translations, for exa[nl)le) AC
clepencts  only on the size of tile cell, not tllc cell posi-
tion. So, ifall of the cellsat level  1, have thesallledi-
lnensions,  then they also lla~’ettle sartlei[llage-~ llar~pecl
radius. J\Te compute, for each level of the tree, a ilila-
tionof  P(.Y) that yields, foreacb pixel, the maximunl
value over  the prescribed distance, AI,:

Pal, (.J-) = Inax P ( } )
YE{  X} O) SAL

(13)

NOJV,  if we sum the probes of I’AL (.Y) at the lo-
cations Ivhere  c maps each of the model points and
the result still does ~lot satisfy tlie matchiilg criterion,
then  we can prune the entire cell.  We must precoln-
Pute each relevant ~’AL (.~) prior to the search, if a
deptll-first or best-first search is used, but we need
only store a single PAL (.Y) at a tilne, if a bread tll-
first search strategy is usccl instead. ‘1’hc remainder of
the search strategy remains the same.

6  R e s u l t s

‘1’ltis section discusses ttie results of a~)plyi[lg  these
techniques to both a synthetic problenl, \vliere  }Vc art
collcerilcd with matclliug t,~vo-di[tle[lsiollal  data, and a

real application, where we lc)calize  a mobile  robot by
!natclling tllree-dimensional range maps.

6 . 1  S y n t h e t i c  e x p e r i m e n t s

\\’e first tested these techniques iucontrolledexper-
i]neuts rvhere  exact ground truth \vas  available, since
the ilnage feature data was  genera ted  synthet ica l ly .
\\Te chose a simple problem dornaiu  (translation of iso-
lated feature points) under denlauding  conditions to
dC[[lOIIStrate the superiority of the probabilistic for-
I[lulation. ‘1’his experiment generated random model
features (to subpixel accuracy). ‘lhe model was  trans-
lated randomly and placed itl the image with consid-
erable occlusion, clutter, and noise. Scc [9] for details.

Over  10000 t r ia l s ,  the  convent ional  Ilausdorff
rnatcllillg method yielded 1293 instances where an in-
correct  match had a  higtler score than the correct
rnatcll, while the probabilistic forlnulation, using a
~)rohability distributio[l sinlilar to  (9) ,  y ie lded 71.5
such failures on ttlc same i[(lages. l’he probabilistic
forlllulation thus yielded superior recognition of t h e
feature ~Jatterns.

\\rc also tested the localization accuracy of the tech-
rliques. Note that a lolvcr  boLInd  on the average accu-
racy of rnatchiug of 0.25 pixels in each direction exists,
sillcc lnatcliing is performed only to pixel  accuracy.
Itl tllc successful trials, the probabilistic formulation
yielded all average localization error of 0.36  pixels in
each direction, }vhile the conventional method yielded
arl average error of 0.48 pixels. ‘1’hc average error of
the corlventional  method  \vas thus over tw’ice as far
from the theoretical nlininlutn as tvitb the probabilis-
tic for[nulatiou.

6.2 Mobile robot localization

\\’llile the sy;itbetic pr-c,hlenl described above yields
~)ositivc  data ~vith respect to the performance of the
p r o b a b i l i s t i c  fornlulation c)f HausdorfT  nlatching, tile
real test, of course, is in real applications. \Ve have
I,revious]y implemented a rllobi]e  robot localization

rncttlod  using collventioual  I[ausdorff matching nleth-
ods [S]. llcre }ve conl~)are  this system to a new irnple-
rncntat ion using the probabilistic forlnulation.

‘1’lle Inotivation for study in: this problem is to al-
low the [Lext generation of hlars rovers to have greater
autolio[l~y  fronl the lander and fronl }turuan  operators.
‘1’lle basic method that is used  is to generate a r a n g e
nlaj) of the tcrraili near tile robot through stereo vi-
sion [7]. ‘1’llis range map is trallsforr[led into a three-
dilllcllsio[l:il occupalicy map descril)itig the terrain (see
l’i,gure  2) zir]d it is then cortll)ared against a previously
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(a) (1))

I’igucc ,2: ]{a[\ge  [I]a[,s arc coIIIIJlltc{l  using stereo  ~l~loll..

(a) I,eft image of a stereo I,air. (1, ) S,lrfacc  extracted fro[,l

the stereo pair.

gcuerated occupallcy  nlap of t,l)e t,erraill  t o  cfctcrf[litl(’
t h e  r e l a t i v e  positiou betlvecn tile lllal~s. F o r  exa[tl-
p l e ,  i t  c a n  b e  co~nl)ared  to a rauge ~rla[j gcrlerated

from J)revious robot positions, or to a Illap generated
j,rior  to tile robot  act ivi ty  by SOIIIC other rtlca]ls [s],

\Yhile the tnatching techtliques  dcscril)ed here h a v e
t,cen discussed in terrlls of tlvo-dil[l(’llsiollal  edge  ~[la~)s,
the generalization to tllrf:c-clillkclisiotlal  surface rna~]s
is straightforward.

In al] expcrilnent  over  13  calnera ~)ositiolls,  lvtlcrc
t h e  grourld trutl) w a s  roeasured hy tlalld, tllc ~)revi-
o u s  ittl~)le[[lc[ltatio[l  using tllc couvelltio[la] IIausdorff
~natclli[lg  ~llethod  liad a[l average error of 0.050 me-
ters, }vhile the new’ iril~>lerllelltatioll  yielded an average
error of 0.042 meters. It is likely  that tiurnau error itl
collecting the ground truth is rcs~)ousihle  for a siguifi-
caut anlount of tile reltlaiuing error. III silnilar cx~~er-
irlients lvhere  the ca~llcras were  pau[led by 25 degrees ,
bu t  }vere Ilot  t ransla ted,  the error \vas reduced fro[li
0.011 meters to 0.004 meter-s. ‘1’hc l)robal)ilistic  forl[lw
Iatio[l of I[ausctorff Inatcl,illg thus yielded significantly
illl~)rovcd  results in this ~]roblelu  dottlain.

7  S u m m a r y

‘1’hc ~)rimary  collt,ributiou  of this paper is a oew
fortnulatiou of  IIausdorff’ matchir]g iu terllls of  ttlax-
irllu[t)  likelihood estiloatioll. ‘1’tiis forllllllation seeks
local Inaxir]la ill the likelihood furlctiorl  of posit iotl of
ttle ttlodel tvitll  r e s p e c t  t o  tile i[llage, kvllrre it is irtl-
p]icitly  assurtled t h a t  tllf> II Iodel a~)~~ears  ill  tllc i[tlagf’.
Ilo\vever, this for]llulatio[) call  t,c a~,l)lie,l eqllally  \vcll
lvlierl tl)c  IIIOdel  does  Ilot a[~[)ear  it] t h e  irllage i f  all

a[)i)roi)riate tllr-cshold  i s  used t o  <Ittcrllii[lc \vt]icll It).

cations are out~)ut  as likely  ll]odel  positions.
I’llis forlllolatiou yiclcls  several advarltages over pre-

vious \vork iu tliis area. First, feature orlcertainties, in
})otll tlie posit ion arid  existence of the features, cau be
t rest td forlllally  iu tile frattlctvork.  %coud, s m o o t h l y
varyitlg ~)rol)al)ility  ctist. ril)utio[l fuilctio[ls car] be used
that elitllillate tile s h a r p  t)oulldary  iuhcreut iu tlle
cotlvelltio]lal ttvo-valud sul)l)ort furlction. Iu addi-
tion, it is sirl]l)lc  to illcor~)oratf> ~)rior kl]otvlcdge  shou t
tile prol)al)ility  distril)lltioll of [l]odel  posit ious  ill tllc
Illatcllillg Ijroccss iu this for[[lulation.

\Ve IIavo descril)e(l ue}v tecllrliques f o r  performi-
ng Illatcllit)g e f f i c i e n t l y  ill this for[tlulation. l’; xper-
illlcllts OIL sy[ltll(~tic  d a t a  illll)ly  t h a t  tl]e  nekv tech-
]Iitlutx  yicl~l I)rrforlllallce sul)erior to the standard for-
Il)ulatioll ~vitll resl)ect to t)otll  rccogl]itioll and local-
izatiotl.  I;illaliy, Ire have aJ~I)lied this tcchuique to the
sf.lf-local izatioll of a nlobilc  robot in a natural erlvirou-

Illellt  using rarige  Il]aps frc)rll  stereo visiou. I m p r o v e d
results tverc also obtained ill this domain.
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